diff --git a/src-tauri/src/db.rs b/src-tauri/src/db.rs index 8ca3fd3..be303ec 100644 --- a/src-tauri/src/db.rs +++ b/src-tauri/src/db.rs @@ -43,7 +43,7 @@ END; CREATE VIRTUAL TABLE IF NOT EXISTS vec_items USING vec0( id INTEGER PRIMARY KEY, - embedding FLOAT[3] + embedding FLOAT[384] );", )?; } diff --git a/src/backend/config.js b/src/backend/config.js index bd7b687..778afb1 100644 --- a/src/backend/config.js +++ b/src/backend/config.js @@ -28,7 +28,7 @@ // ベクトルDB database: { filename: process.env.DB_PATH || "vector.db", - embeddingDim: Number(process.env.VEC_DIM ?? 3), + embeddingDim: Number(process.env.VEC_DIM ?? 384), }, // ロギング diff --git a/test/mcp-handlers.test.js b/test/mcp-handlers.test.js index 99b129c..c861b14 100644 --- a/test/mcp-handlers.test.js +++ b/test/mcp-handlers.test.js @@ -16,13 +16,13 @@ it("should validate embedding dimension correctly", () => { const testVectors = [ - { dim: 3, valid: true }, + { dim: 384, valid: true }, { dim: 2, valid: false }, - { dim: 4, valid: false }, + { dim: 385, valid: false }, ]; - const EMBEDDING_DIM = Number(process.env.VEC_DIM ?? 3); - + const EMBEDDING_DIM = Number(process.env.VEC_DIM ?? 384); + testVectors.forEach(({ dim, valid }) => { const vector = new Array(dim).fill(0.5); const isValid = vector.length === EMBEDDING_DIM; diff --git a/test/setup.js b/test/setup.js index d168b92..a723c8a 100644 --- a/test/setup.js +++ b/test/setup.js @@ -11,7 +11,7 @@ } catch (err) { // ロックされているファイルは無視して続行 } - + const db = new Database(dbName); return db; } @@ -30,7 +30,7 @@ // テスト用環境変数の設定 export function setTestEnv() { - process.env.VEC_DIM = "3"; + process.env.VEC_DIM = "384"; process.env.LLAMA_CPP_BASE_URL = "http://127.0.0.1:8080"; process.env.LLAMA_CPP_EMBEDDING_MODEL = "nomic-embed-text"; process.env.LLAMA_CPP_MODEL = "mistral";